
MA 3046 - Matrix Analysis
Laboratory Number 11

Iterative Solution of Systems of Linear Equations

As we have already discussed numerous times, numerical linear algebra involves some
fundamentally different considerations than apply to more general numerical approxima-
tions, e.g. the approximation of integrals, derivatives, etc. One primary reason for this is
that, in theory,

A x = b

is a problem which requires no approximations! Elementary linear algebra classes demon-
strate that this problem is exactly solvable, using infinite precision arithmetic, by any of
several variants of Gaussian elimination, and in a finite number of steps. (Moreover, espe-
cially efficient variants of such methods exist for solving commonly-occurring cases whereA
has some special structure, e.g. banded matrices.) Because they theoretically produce the
exact solution, Gaussian elimination and its relatives, e.g.Gauss-Jordan elimination, LU
decomposition, etc., are commonly referred to a Direct Methods.

However, as we have also discussed, elementary linear algebra classes also generally fail
to address exactly how large the magnitude of this (albeit finite) number of computations
required by direct methods may actually be. In fact, for any of the Gaussian-elimination
variants, this number can be shown to be roughly proportional to m3, where m is the
number of rows and columns in A. (The proportionality becomes more exact the larger
the value ofm.) We find this oversight unfortunate because, “real” application matrices can
be quite large, and therefore, in practice, the number of computations required when, say
for example, n ∼ 105, can become rather daunting. Consequently, the corresponding time
required for solution may become quite unsatisfactory, even on what we would generally
think of as relative fast computers. Moreover, for physical reasons, many “real” problems
involve relatively sparse matrices A, i.e. ones composed mainly of zeros. Unfortunately,
methods based on Gaussian elimination frequently cannot exploit this structure, since
the elementary row operations required by the elimination process tend to fill-in many
of the locations originally occupied by zeros with non-zeros resulting from the required
calculations.

Because of such considerations, a second, general class of methods, so-called Itera-
tive Methods have been developed. These methods traditionally involve reformulating the
original problem into a new, equivalent one of the form

x = Gx+ b0 (1)

for which algorithm:
x(k+1) = Gx(k) + b0 (2)

converges. Such methods are especially attractive when A is sparse, because for many
implementations, G will contain only about as many non-zero elements are were in the
original matrixA, and the multiplications in (2) need only be actually done for the non-zero
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elements of G. Different iterative methods, of which the most commonly-encountered are
Jacobi, Gauss-Seidel, Successive Over-relaxation (SOR), and Conjugate Gradient methods,
arise from different constructions of the iteration matrixG. More modern methods involve
so-called Krylov space iterations. While consideration of such methods is beyond the scope
of this laboratory, we would note that their practical success still required a formulation
where matrix multiplication can be done fairly cheaply!

The matrixG is also commonly called the splitting matrix, because for many methods,
it can be constructed by splitting the matrix A in the original system into several parts,
and then moving some of those parts from one side of the equality to the other. For
example, the matrix A can be written:

A = D+ L+U ,

where D consists of the diagonal elements of A, L contains the elements from below the
diagonal, and U the elements above. (Note these are not the same as the L and U from
the Gaussian elimination LU decomposition.) In terms of these matrices, the original
system then becomes

(D + L + U) x = b

or, equivalently

D x = − ( L + U ) x + b

or

x = −D−1 ( L + U )| {z }
G

x + D−1 b| {z }
b0

, (3)

which is of the required form with G and b0 as shown. We commonly call the iterative
form of equation (3), i.e.

x(k+1) = −D−1 ( L + U ) x(k) + D−1 b , (4)

the Jacobi method. This method is implemented in the program jacobi.m as shown in
Figure 11.1. (Note that this program is designed solely to show the convergence of the
algorithm. In fact, as written, it exemplifies exactly how NOT to program the jacobi
algorithm, since by using full matrices, backslashes, etc., it in effect discards exactly the
feature, i.e. the need to work with only the non-zero elements, that make iterative methods
attractive.) Note also this program makes use of the MATLAB functions diag( ), which
can either extract or create the diagonal elements of a matrix, and the functions tril( )
and triu( ), which extract, respectively, the upper and lower-triangular parts of a matrix
(including the diagonal elements).

Other iterative methods which we shall also study in this laboratory are the Gauss-
Seidel, method, which can be expressed as:

x(k+1) = −(D + L)−1U| {z }
G

x(k) + (D + L)−1b| {z }
b0

, (5)
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%
clear
format bank ;
data = [ ] ;

%
for N = [ 2 4 8 16 32 64 128 ] ;

%
h = 1/N ;

%
A(1,1:2) = [ 1 0 ] ;
for k = 2:N

A(k,(k-1):(k+1)) = [ 1 -2 1 ] ;
end
A(N+1,N:(N+1)) = [ 0 1 ] ;

%
L = A - triu(A) ;
U = A - tril(A) ;
D = diag( diag(A)) ;
G = -D\(L+U) ;

%
b = [ 0 ; -h∧2*ones(N-1,1) ; 0 ] ;
bprime = D\b ;

%
u = A\b ;
conv = max( abs( eig(G))) ;

%
xn = zeros(N+1,1) ;
niter = 0 ;
while ( norm( u - xn ) > .000001 )

xn = G*xn + bprime ;
niter = niter + 1 ;

end
%

data = [ data ; N h conv niter ] ;
end

%
data ;
format ;

Figure 11.1 - Listing of Program jacobi.m
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and the SOR method:

x(k+1) = (D + ω L)−1((1 − ω)D − ωU)| {z }
G

x(k) + ω(D + ω L)−1 b| {z }
b0

(6)

Interesting enough, iterative methods have another, small side benefit. This benefit
accrues due to the fact that, in general, convergence of these methods is not dependent on
the choice of x(0), and therefore, round-off errors do not propagate. Put somewhat differ-
ently, each new iteration of (2) starts with an effectively “clean slate,” and the fact that
the x(k) that is actually being used is slightly different from the “true” one simply means
that iteration is starting with a slightly different initial guess. On the down side however,
this fact does not change the more fundamental observation that the error encountered
when solving a linear system satisfies the inequality

k e k
kx k ≤ κ(A) · k r kkb k

where κ(A) ≡ kA k ·kA−1 k is the condition number of A. Therefore, in general, applying
an iterative method to a truly ill-conditioned problem makes no more sense than applying
a direct method to the same problem.
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Name:

MA 3046 - Matrix Analysis
Laboratory Number 11

Iterative Solution of Systems of Linear Equations

1. Copy to your local directory the file:

jacobi.m

and start MATLAB.

2. Give the MATLAB help command to review the diag, tril and triu functions. Once
you have done this, use your texteditor to study the m. file jacobi.m until you are
comfortable that it implements the algorithm given in (4).

Then run the program (you may need to be a bit patient, depending on the basic
speed of your machine) and record the results:
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3. Modify the MATLAB .m file jacobi.m so as to implement the Gauss-Seidel method (5).
(You may want to copy jacobi.m into a new file, say gauss seidel.m before making these
modifications.

Then run the modified program. Does the observed behavior (compared to the results of
the Jacobi algorithm) look reasonable and agree with the theory?
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4. Lastly, modify the MATLAB .m file jacobi.m so as to implement the SOR method (6).
(You may again want to make a new copy. Also, be very careful when computing b’. The
MATLAB expression

w * ( D + w * L) \ b
does not produce what you might think it would!) Use for the value of the relaxation
parameter (ω)

ω =
2

1 + sin
¡
πh
2

¢
Then run the modified program. Does the observed behavior (compared to the results of
the Jacobi algorithm) look reasonable and agree with the theory?
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